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Microtubules are filamentous structures that play a critical role in a diverse array of
cellular functions including,mitosis, nuclear translocation, trafficking of organelles
and cell shape. They are composed of α/β-tubulin heterodimers which are
encoded by a large multigene family that has been implicated in an umbrella
of disease states collectively known as the tubulinopathies. De novo mutations in
different tubulin genes are known to cause lissencephaly, microcephaly,
polymicrogyria, motor neuron disease, and female infertility. The diverse
clinical features associated with these maladies have been attributed to the
expression pattern of individual tubulin genes, as well as their distinct
Functional repertoire. Recent studies, however, have highlighted the impact of
tubulin mutations on microtubule-associated proteins (MAPs). MAPs can be
classified according to their effect on microtubules and include polymer
stabilizers (e.g., tau, MAP2, doublecortin), destabilizers (e.g., spastin, katanin),
plus-end binding proteins (e.g., EB1-3, XMAP215, CLASPs) and motor proteins
(e.g., dyneins, kinesins). In this review we analyse mutation-specific disease
mechanisms that influence MAP binding and their phenotypic consequences,
and discuss methods by which we can exploit genetic variation to identify
novel MAPs.
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Introduction

Microtubules

Microtubules are large polymers formed by repeats of α- and β-tubulin heterodimers.
Tubulin heterodimers fold via a highly conserved and complex pathway involving
chaperones, chaperonins and other co-factors (Lewis et al., 1997). Once folded, the α-
and β-subunits bind a molecule of guanosine triphosphate (GTP) each, at two conserved
structural motifs: the non-exchangeable site and the exchangeable site (Nogales et al., 1998;
Lowe et al., 2001). Heterodimers assemble longitudinally into protofilaments, arranged
uniformly with β-tubulin exposed at the growing tip, with 13 protofilaments associating
laterally to form a hollow, cylindrical structure (Nogales, 2001). Microtubules cycle between
periods of steady growth (polymerisation) and rapid collapse (de-polymerisation or
“catastrophe”), by the addition or loss of tubulin heterodimers (Mitchison and
Kirschner, 1984). This behaviour is utilised by every mammalian cell to perform a range
of functions, including the control of cell morphology, cell motility, intracellular transport,
and cell division. To accurately perform such a wide repertoire of tasks, microtubules are
subject to regulation onmultiple levels. Whilst they are often depicted as homogenous chains
of α/β-tubulin heterodimers, microtubules can be constituted by a variety of similar yet
subtly distinct α- and β-tubulin isotypes, each compatible with the structure of the
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microtubule polymer lattice. These tubulin isotypes are encoded for
by different tubulin genes distributed across the human genome:
eight α- and nine β-tubulins (Breuss and Keays, 2014).

Each of these tubulin isotypes has a unique expression pattern
(Leandro-García et al., 2010). For instance, TUBB3 is predominantly
found in post-mitotic neurons, TUBA8 in muscles and the testes
(Braun et al., 2010), TUBB1 in haemopoietic cells (Leandro-García
et al., 2010), and TUBB8 in oocytes (Feng et al., 2016). The
consequence of this variation in expression is that microtubules
in different cell types consist of a different blend of tubulin
heterodimers. This is relevant because it confers different
properties on those microtubules, enables different microtubule-
associated proteins to bind, and it results in different disease states
when they are mutated.While tubulin isotypes share a high degree of
sequence homology, they exhibit notable divergence in the
unstructured carboxy-terminal tail (CTT) which extends
outwards and away from the microtubule wall and into the cell
cytoplasm (Nogales et al., 1998). These CTTs are predicted to play
an important role in many respects of microtubule biology.
Importantly, they are site of multiple reversible post-translational
modifications including de-tyrosination, glutamylation and
glycylation (Janke and Bulinski, 2011). Despite emerging evidence
that CTTs might play an unexpected role modulating microtubule
polymerisation dynamics (Parker et al., 2018; Chen et al., 2021), it is
their relative accessibility at the polymer exterior that are thought to
be critical to the function of another key regulator of microtubule
behaviour, the wide range of microtubule-associated proteins
(MAPs).

microtubule-associated proteins

Microtubule-associated proteins were originally defined as those
proteins that purified with microtubules from brain extracts
(Sloboda et al., 1975). With the passage of time and the
development of various methods, this criterion has been refined.
In addition to co-sedimenting with microtubules, MAPs should co-
localize with microtubules by immunofluorescence in cultured cells
and their staining pattern should become dispersed upon addition of
depolymerizing drugs (Huber et al., 1985; Bodakuntla et al., 2019).
MAPs can be further categorized based on their function and/or
localization on microtubules (Tortosa et al., 2016; Tortosa et al.,
2017; Goodson and Jonasson, 2018; Bodakuntla et al., 2019). Motor
proteins (e.g., dyneins, kinesins) are MAPs responsible for
generating cellular forces and for intracellular transport. Some
MAPs contribute to microtubule nucleation (e.g., doublecortin)
while others promote catastrophe by depolymerization or
severing (e.g., spastin, katanin). “+TIP” binding proteins (e.g.,
EB1-3, XMAP215, CLASPs) and minus-end binding proteins
(e.g., CAMSAP1-3) bind to the plus- and minus-ends of
microtubules respectively, whilst structural MAPs bind along the
lateral-wall (lattice) of microtubules, acting as cross-linkers with
intermediate filaments and the actin cytoskeleton (e.g., MACF1,
MACF2) (Hendershott and Vale, 2014; Tortosa et al., 2016). Some
authors also consider tubulin-modifying enzymes as MAPs, since
they necessarily interact with microtubules to deposit specific PTMs
(Kapitein and Hoogenraad, 2015; Tortosa et al., 2016), as well as
several metabolic enzymes that have been shown to bind

microtubules (Walsh et al., 1989; Lloyd and Hardin, 1999). In
addition, there are MAPs that are recruited to the microtubules
indirectly, via other proteins that bind to microtubules. Examples
include the phosphatase, PP1, recruited to microtubule polymers by
tau, and a group of kinases, MAST1-4, that preferentially colocalize
with microtubules in the presence of other MAPs (Walden and
Cowan, 1993; Liao et al., 1998; Tripathy et al., 2018). For a
comprehensive overview of MAP subtypes and functions, we
recommend the following review (Bodakuntla et al., 2019).

With this plethora of functions, it is not surprising that each
family of MAPs adopts a unique structural conformation and
interacts with microtubules differently (Amos and Schlieper,
2005; Bodakuntla et al., 2019). There is no consensus amino acid
sequence or 3D structure for the microtubule-binding domain of
different MAP families. In fact, some of the domains reported
assume distinct forms; either helical coiled-coils or hairpins, or
more globular domains like the CAP-Gly and calponin-homology
domain found in end-binding MAPs (Amos and Schlieper, 2005).
These observations highlight the potential for several MAPs to
decorate microtubules simultaneously. For example, doublecortin
(DCX) which is a neuronal MAP, is known to bind adjacent
protofilaments, providing a contact point between protofilaments
(Bechstedt and Brouhard, 2012). On the other hand, tau, one of the
first MAPs to be identified, binds to the microtubule surface,
longitudinally along protofilaments (Amos and Schlieper, 2005).
Moreover, it has been demonstrated that specific tubulin PTMs
affect the interaction with several MAPs, such as the regulation of
Tau binding through polyglutamylation of tubulin CTTs (Boucher
et al., 1994; Gadadhar et al., 2017; Bodakuntla et al., 2019; Hausrat
et al., 2022).

The tubulinopathies

Mutations in multiple tubulin genes have been associated with
human disease. Known collectively as the ‘tubulinopathies’, this
disease spectrum encompasses numerous neurodevelopmental
disorders including, microcephaly, lissencephaly, and
polymicrogyria, reflecting the large number of tubulin genes
expressed during embryonic brain formation (e.g., TUBA1A,
TUBB2A, TUBB2B, TUBB3, TUBB5) (Keays et al., 2007; Jaglin
et al., 2009; Poirier et al., 2010; Breuss et al., 2012; Cushion et al.,
2014; Romaniello et al., 2018). In addition to cortical malformations,
the tubulinopathies also include disorders of ocular motor function
(associated with variants in TUBB3, TUBB2B & TUBA1A),
whispering dysphonia (TUBB4A), amyotrophic lateral sclerosis
(TUBA4A), female meiotic infertility (TUBB8), Leber congenital
amaurosis with hearing loss (TUBB4B), and
macrothrombocytopaenia (TUBB1) (Kunishima et al., 2009;
Bahi-Buisson et al., 2014; Smith et al., 2014; Feng et al., 2016;
Luscan et al., 2017; Strassel et al., 2019; Jurgens et al., 2021;
Kimmerlin et al., 2022). Irrespective of the clinical attributes of
the disease the tubulinopathies are predominantly due to de novo
heterozygous, missense mutations and are predicted to act in a
gain-of-function manner in most instances (Figure 1) (Romaniello
et al., 2018; Leca et al., 2020). The different diseases that result from
tubulin mutations is thought to reflect the expression pattern of a
given isoform and the functional repertoire of that protein.
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Nevertheless, mutations in different tubulin genes can result in
strikingly similar phenotypes. For instance, a E421K mutation in
TUBB2B and a R262C mutation in TUBB3 both cause ocular
motor dysfunction, whereas individuals with a T312M variant in
TUBB2B and a R46G mutation in TUBB3 both present with
multifocal polymicrogyria (Jaglin et al., 2009; Tischfield et al.,
2010; Cederquist et al., 2012; Bahi-Buisson et al., 2014). This raises
the prospect that a critical determinant that predicts a disease
outcome is the actual amino acid mutated, and the molecular
pathway disrupted.

Mechanistic studies have explored how tubulin mutations
can influence microtubule biology. Some variants have been

shown to perturb the chaperone-mediated folding of
heterodimers (e.g., TUBA1A L397P) (Tian et al., 2010), while
others have no detectable influence on folding whatsoever (e.g.,
R402H in TUBA1A), generating heterodimers that integrate into
microtubules with ease. The latter are of particular interest
because recent studies have highlighted that they can alter the
interaction between microtubule polymers with MAPs (Figure 2).
In this review, we focus on the tubulin gene variants that have
been shown to modify binding of MAPs including kinesin,
dynein, XMAP215, CLASP and EB1 (Table 1), how these
might affect microtubule function, and the extent to which
they determine the disease state.

FIGURE 1
Mapping of pathogenic tubulin mutations across tubulin isotypes. Tubulin proteins can be divided into three regions: the N-terminal (green),
Intermediate (pink), and C-terminal (blue) domains. The latter constitutes the major MAP-binding region of tubulin. Variants shown to affect MAP
interaction are highlighted in red.
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Motor proteins: Kinesins

Kinesins are one of twomajor microtubule-associated molecular
motors. There are at least 45 mammalian “KIF” genes that can be

broadly categorised into two main types: 1) motile kinesins which
use ATP chemical energy to shuttle intracellular cargo along
microtubule ‘tracks’ (usually towards polymer plus-ends); and 2)
non-motile kinesins that de-polymerise microtubules (Dagenbach

FIGURE 2
In silico homology model of an α/β-tubulin heterodimer (A) facing the exterior surface of a microtubule polymer and (B) a rotated side view of an
individual microtubule protofilament (PDB 2XRP) (Fourniol et al., 2010). α-tubulin is represented by a pink ribbon, β-tubulin in silver. Unstructured, tubulin
carboxy-terminal tails are not shown. Mutated residues shown to effect MAP binding are mapped onto α- and β-tubulin subunits (red).

FIGURE 3
(A) In silico homologymodel of a microtubule protofilament with bound kinesin. α-tubulins are represented by a pink ribbon, β-tubulins in silver and
kinesin in gold (PDB 6ZPI) (Atherton et al., 2020). (B) A detailed view of the predicted kinesin-interacting domain of β-tubulin. Mutated residues shown to
effect kinesin binding and/or processivity shown in red.
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and Endow, 2004). Motile kinesins (e.g., KIF1A, KIF1Bβ, KIF5A and
KIF21A) are particularly important for neuronal function and
survival, as essential proteins within axons and synaptic termini
must be transported considerable distances from the cell body
(Hirokawa et al., 2009). They are also crucial for mitotic division,
facilitating efficient chromosomal congression and segregation
during cell division (Wordeman, 2010).

The key sites of interaction between tubulins and kinesins were
initially discovered using alanine mutation scanning, identifying
positively charged amino acids on the motor protein corresponding
to three negatively charged residues on the β-tubulin subunit: E410,
D417, and E421 (Woehlke et al., 1997; Uchimura et al., 2006)
(Figure 3). These three amino acids are conserved throughout β-
tubulins, and pathogenic mutants affecting these positions have
since been identified in TUBB2A, TUBB2B, TUBB3, and TUBB8
(Tischfield et al., 2010; Cederquist et al., 2012; Feng et al., 2016;
Sferra et al., 2018). The effects of TUBB3 mutants on kinesin
function have been examined comprehensively. TUBB3 is a
neuron-specific tubulin isotype (Cleveland, 1987; Joshi and
Cleveland, 1989), and TUBB3 mutations typically cause structural
brain malformations and/or congenital fibrosis of the extraocular
muscle 3 (CFEOM3), an axon guidance disorder affecting the
muscles that control the eye (Poirier et al., 2010; Tischfield et al.,
2010). In order to model the disease mechanisms of TUBB3-related
CFEOM3, Tischfield and others generated and characterised a
TUBB3 R262C mouse mutant (Tischfield et al., 2010). Consistent
with patients carrying this variant, the mouse mutant exhibited axon
guidance defects (including in the oculomotor nerve), but otherwise
normal brain architecture. The authors hypothesised that kinesin

dysfunction may be implicated in the pathology of CFEOM3, as
mutations in KIF21A had been shown to cause similar oculomotor
defects (Yamada et al., 2003). Despite not binding directly with
kinesin, the R262 residue is predicted to form a H-bond with D417
(Figure 3B) (Tischfield et al., 2010). Co-immunoprecipitation of
brain lysates revealed a reduction of microtubule-bound KIF21 in
R262C mutant mice compared to wild-type littermates, suggesting
that loss of the R262-D417 H-bond alters the tertiary structure of β-
tubulin at the kinesin-interacting interface. To test their hypothesis
on a wider range of TUBB3 variants, the authors turned to a budding
yeast system to assess kinesin processivity. Using this model, they
assessed the accumulation of yeast kinesins, Kip3p & Kip2p, at the
growing tip of microtubules (Carvalho et al., 2004; Gupta et al.,
2006). Compared to wild-type controls, yeast expressing
TUBB3 R262C, R262H, E410K, D417H & D417N showed a
significant reduction of kinesin at microtubule plus ends, further
implicating the motor protein in the disease state (Tischfield et al.,
2010).

Building upon these findings, Hirokawa and others investigated
fourteen β-tubulin mutations associated with either CFEOM3 or
brain malformations using overexpression in dissociated mouse
neurons (Niwa et al., 2013). Tracking known kinesin cargos,
VAMP2, RAB3, and mitochondria, they observed diminished
axonal transport in the presence of the TUBB3 mutants E410K
and D417H (Nangaku et al., 1994; Tanaka et al., 1998; Niwa et al.,
2008; Song et al., 2009; Niwa et al., 2013). Microtubule co-
sedimentation confirmed a reduction in kinesin binding with
these two variants, with significantly increased levels of kinesin
(but not dynein) detected in the cytoplasmic fraction (Niwa et al.,

TABLE 1 Tubulin gene variants shown to affect MAP interaction. H = alpha-helix; B = beta-strand; CFEOM3 = Congenital Fibrosis of the extraocular muscle;
CFEOM3 = Congenital Fibrosis of the extraocular muscle type 3; MCD = Malformations of cortical development.

Kinesin

Variant Isotype Subunit Position Patient Phenotype References

R262C TUBB3 H8-B7 Loop Eye movement disorder (CFEOM3) Tischfield et al. (2010)

R262H TUBB3 H8-B7 Loop Eye movement disorder (CFEOM3) Tischfield et al., 2010, Ti et al. (2016)

E410K TUBB3 H11-H12 Loop Eye movement disorder (CFEOM3) Tischfield et al. (2010)

D417N TUBB3 H12 Eye movement disorder (CFEOM3) Tischfield et al. (2010)

D417H TUBB3 H12 Eye movement disorder (CFEOM3) Tischfield et al. (2010), Ti et al. (2016)

E421K TUBB2B H12 MCD (polymicrogyria) and eye movement disorder (CFEOM) Cederquist et al. (2012)

Dynein

R402H TUBA1A H11-H12 Loop MCD (Lissencephaly) Aiken et al. (2019), Leca et al. (2020)

Bim1 (EB1)

F265L TUBB2B B7 MCD (Polymicrogyria) Denarier et al. (2019)

XMAP215

V409I TUBA1A H11-H12 Loop MCD (Pachygyria) Hoff et al. (2022)

V409A TUBA1A H11-H12 Loop MCD (Agyria) Hoff et al. (2022)

CLASP1 & CLASP2

P263T TUBA1A H8-B7 Loop MCD (Lissencephaly) Yu et al. (2016)

R402H TUBA1A H11-H12 Loop MCD (Lissencephaly) Yu et al. (2016)
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2013). Importantly, variants associated with only mild CFEOM3 or
cortical malformations exhibited normal kinesin function in these
assays, supporting a potential phenotype-specific disease pathway.
Consistent with a gain-of-function mechanism, the authors showed
that mutant subunits only perturb kinesin function when incorporated
into microtubules (Niwa et al., 2013). Furthermore, such effects were
not restricted to TUBB3, as axonal transport defects were also observed
for equivalent substitutions in TUBB2B and TUBB5 (Niwa et al., 2013).
This observation was corroborated by reduced kinesin binding and
processivity due to two further gene variants, TUBB2A D417N and
TUBB2B E421K, associated with progressive neuropathy and CFEOM,
respectively (Cederquist et al., 2012; Sferra et al., 2018). These
phenotypes are distinct from the cortical brain malformations which
are commonly associated with genetic changes in TUBB2A and
TUBB2B (Romaniello et al., 2018). Taken together, these data
highlight the existence of mutation specific disease mechanisms that
diminish kinesin interaction and intracellular trafficking necessary to
generate, guide and maintain healthy and functional neuronal
processes.

Motor proteins: Dynein

The second major family of microtubule-bound motor proteins
are the dyneins. In a similar fashion to kinesins, dyneins shuttle
along microtubule ‘tracks’ using energy generated through ATP
hydrolysis. They are large complexes composed of two identical
heavy chains which include the microtubule binding domain and a
number of intermediate and light chains (Vallee et al., 2004). They
are responsible for transport of intracellular cargo towards

microtubule minus ends and are involved in both cell division
and cell migration (Vale, 2003).

Key dynein-binding tubulin residues were first probed for using
a mutant alanine screen (Uchimura et al., 2015). This highlighted
two α-tubulin residues of particularly importance, R402 (Figure 4)
and E415, located within the H11–H12 loop and alpha-helix 12 of
the α-tubulin subunit respectively (Nogales et al., 1998; Uchimura
et al., 2015). These amino acids are predicted to form salt bridges
with one another stabilising the α-tubulin C-terminal hairpin
structure important for MAP binding, as well as forming salt
bridges directly with dynein (Lowe et al., 2001; Aiken et al.,
2019). Despite this, binding between microtubules and the motor
protein was still observed even after substituting these residues to
alanine (Uchimura et al., 2015). Directional movement was
completely ablated however, suggesting R402 and E415 function
primarily as structural signals for ATPase activation (Uchimura
et al., 2015).

To our knowledge, pathogenic α-tubulin mutants affecting
E415 have not been reported. R402, on the other hand, is a
known hot-spot for human mutations in TUBA1A, with
substitutions of this residue constituting almost a third of all
reported variants in the gene (Bahi-Buisson et al., 2014).
Individuals with R402 C/H/L substitutions commonly present
with lissencephaly, a severe cerebral cortex malformation caused
by defective neuronal migration during brain development (Moon
and Wynshaw-Boris, 2013). Consistent with this observation
mutations in dynein heavy chain (DYNC1H1) also cause cortical
malformations (Vissers et al., 2010; Poirier et al., 2013), as do
variants affecting dynein regulators LIS1 and NDEL1 (Yamada
et al., 2008).

FIGURE 4
(A) In silico homologymodel of a microtubule protofilament with bound dynein. α-tubulins are represented by a pink ribbon, β-tubulins in silver and
dynein microtubule-binding domain in gold (PDB 3J1T) (Redwine et al., 2012). (B) A detailed view of the dynein-interacting domain. The R402 residue of
α-tubulin (red) is a hot-spot for pathogenic variants in TUBA1A, which have been shown to affect dynein interaction and processivity (Aiken et al., 2019;
Leca et al., 2020).
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Using a yeast as a model system, Aiken and others investigated
the consequences of two TUBA1A arginine 402 variants (R402C and
R402H) on dynein function (Aiken et al., 2019). They generated
analogous mutants in Saccharomyces cerevisiae, substituting the
equivalent arginine (R403) in the major yeast α-tubulin, Tub1.
They confirmed that both mutants form functional tubulin
heterodimers which incorporate into endogenous microtubules,
supporting a gain-of-function mechanism (Aiken et al., 2019).
Unlike the multiple specialised roles of dynein in neurons,
dynein’s solitary task in yeast is to translocate the nucleus and
mitotic spindle across the plane of cytokinesis (Aiken et al., 2019).
Aiken and others analysed hydroxyurea-induced S-phase arrest to
isolate spindle sliding events, providing a clear and robust readout to
assess mutant effects on dynein function. They reported a reduction
in frequency and distance of sliding events for both R403C&H
mutants compared to wild type. Importantly, they confirmed dynein
recruitment to microtubule plus-ends (a prerequisite for retrograde
locomotion) was normal and that kinesin function was undisturbed,
suggesting these mutants directly affect dynein interaction and
processivity (Aiken et al., 2019).

These conclusions have been further supported by an independent
study in our lab which generated a conditional Tuba1a R402Hmutant
mouse (Leca et al., 2020). Expression of the R402H mutation in both
the developing cortex and hippocampus resulted in a severe defect in
neuronal migration, consistent with the patient phenotype. To gain
insight into the underlying molecular mechanisms we performed
microtubule co-sedimentation on brain lysates and undertook
quantitative mass spectrometry. Comparison of the “microtubule
proteome” identified 286 proteins that were significantly altered in
R402H animals, seven of which were known MAPs (Leca et al., 2020).
Western blot analysis of these seven proteins confirmed that five were
present at lower levels in brain lysates R402H mutants (VAPA,
VAPAB, REEP1, EZRIN, and PRNP). Only dynein intermediate
chain (DYNC1I1) was expressed at endogenous levels but
associated less with microtubules. To assess dynein processivity in
the presence of this variant, cortical neurons were cultured from
mutant and wild-type mice and live cell tracking of dynein-
mediated lysosomal transport performed. This highlighted a
significant reduction in lysosomal run length, suggesting that
dynein processivity towards the cell soma was compromised in
mutant animals (Leca et al., 2020). Consistent with dynein
dysfunction, we showed a defect in nucleus-centrosome coupling in
R402H animals indicative of impaired dynein-mediated nucleokinesis
and migration (Leca et al., 2020). Intriguingly, we did not observe any
difference in the levels of sedimented dynein heavy chain (DYNC1H1)
which binds directly to microtubules, in contrast to the intermediate
chain (DYNC1I1) which serves as a bridge between the heavy chain
and cargo adaptor (Carter et al., 2008; Schroeder et al., 2014).
Moreover, given the large number of proteins dysregulated in
R402H animals, it is apparent that a single point mutation can
have pleiotropic effects, potentially onmultiple uncharacterisedMAPs.

Microtubule plus-end MAPs (and TAPs)

Microtubule plus-end MAPs or “+TIPs” collectively describe a
diverse subset of proteins which, as their name may suggest, localize
at the growing tips of microtubule polymers (Perez et al., 1999;

Mimori-Kiyosue et al., 2000; Jiang et al., 2012). Certain plus-end
MAPs, such as the end-binding protein family (EB1, EB3) are
known to recruit and form complex networks with other + TIPs
at this region of the microtubule polymer, whereas others bind to the
microtubule end directly (Honnappa et al., 2005; Slep et al., 2005;
Honnappa et al., 2009; Al-Bassam et al., 2010; Kumar et al., 2017).
Plus-end MAPs generally regulate one or more of the basic
parameters underlying microtubule dynamics: rate of
polymerisation, rate of de-polymerisation, the frequency of
catastrophe and/or the frequency of rescue (Straube, 2011).
Examples include microtubule polymerases (e.g., XMAP215s)
that catalyse and accelerate microtubule growth, and Cytoplasmic
Linker-Associated Proteins (CLASPs) that stem microtubule
depolymerisation events and potentiate re-growth (Gard and
Kirschner, 1987; Al-Bassam and Chang, 2011; Moriwaki and
Goshima, 2016). Evidence suggests that tubulin mutations can
affect the correct localisation and function of these specialised
MAPs, further highlighting their critical role in microtubule biology.

Plus-end MAPs: XMAP215 family
microtubule polymerases

This family is named after the XMAP215 microtubule
polymerase identified in Xenopus laevis but also comprises
human Colonic and Hepatic Tumour Overexpressed Gene (ch-
TOG), Minispindles (D. melanogaster), and Stu2 (S. cerevisiae)
(Gard and Kirschner, 1987; Wang and Huffaker, 1997; Charrasse
et al., 1998; Cullen et al., 1999). As with many plus end-binding
proteins, the XMAP215s are composed of arrayed tubulin-binding
Tumour Overexpressed Gene (TOG) motifs, containing 250 amino
acid residue repeats (Akhmanova et al., 2001; Cassimeris et al., 2001;
Leano et al., 2013). Two of these, TOG1 and TOG2, are structurally
conserved and present in all family members but, in higher
eukaryotes, five TOG domains are separated by unstructured
linkers of 60–100 residues (Figure 5A) (Currie et al., 2011;
Widlund et al., 2011). The TOG1 and TOG2 domains of yeast
Stu2 and their association with tubulin have been examined in detail
(Ayaz et al., 2012). TOG1 and TOG2 are predicted to bind tubulins
at a 1:1 ratio, but with a particular affinity for curved heterodimer
conformations. This propensity for curved tubulin localises these
polymerases to the growing tip as, here, recently incorporated
tubulins initially assume an expanded and flayed configuration
before integrating into the microtubule lattice (Ayaz et al., 2014).

Microtubule polymerisation is highly dependent on local
concentrations of un-polymerised “free” tubulin surrounding the
growing tip (Desai and Mitchison, 1997; Howard and Hyman,
2009). Through their tubulin-binding TOG domains, XMAP215s
enrich local concentrations of free tubulin near microtubule plus-
end (Figure 5B). TOG domains are thought to work in a coordinated
fashion to catalyse polymerisation, as they can discriminate between
conformational states of tubulin dimers (Ayaz et al., 2012). Initially,
TOG1 recognises and captures naturally curved free heterodimers,
subsequently recruiting them into a growing microtubule. Upon
integration into the microtubule, heterodimers assume a slightly
straighter configuration, after which they can no longer bind
TOG1 but are “handed-off” to TOG2. When fully embedded into
the microtubule lattice formation, the conformation of tubulin
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becomes too straight for TOG2, which in turn releases the
polymerised heterodimer (Ayaz et al., 2012). It has since been
shown that TOGs 1-3 preferentially bind curved heterodimers,
whilst TOG 4 and 5 are structurally distinct and bind
microtubule-incorporated subunits (Byrnes and Slep, 2017).

A key residue at the heart of the TOG1/2-tubulin interface is valine
409 of α-tubulin, located within the H11-H12 loop (Figures 5C, D)
(Nogales et al., 1998; Ayaz et al., 2012). Two pathogenic variants in
TUBA1A have been reported at this residue, V409I and V409A,
identified in individuals with pachygyria and agyria (mild and severe
lissencephaly) respectively (Bahi-Buisson et al., 2014; Fallet-Bianco
et al., 2014). Given the position of the residue, Hoff and others
sought to investigate whether this mutation altered
XMAP215 interaction (Hoff et al., 2022). Mutating the equivalent
valine (V410) in yeast α-tubulin Tub1 to isoleucine or alanine they
showed that both V409I and V409A mutants diminished the levels of
Stu2/XMAP215 at the microtubule tip through a reduction in
Stu2 TOG1 binding affinity (Hoff et al., 2022). Surprisingly they
showed that this caused an increase in microtubule polymerisation
rates, concurrent with a reduction in the frequency of catastrophes

(Hoff et al., 2022). The effects on polymerisation speeds were echoed
when overexpressing these mutants in mouse primary neurons and, in
bothmodels, the effects were more prominent with the valine to alanine
mutant, concomitant with the more severe phenotype in the individual
carrying the TUBA1A p.V409Amutation (Hoff et al., 2022). In order to
reconcile the somewhat contradictory decrease in TOG binding of α-
tubulin mutants with faster polymerisation rates, Hoff and others
proposed a model by which the V410I&A mutants result in
straighter heterodimers that weaken the binding potential of
Stu2 TOG domains but, simultaneously, favour efficient microtubule
incorporation and subsequent growth (Hoff et al., 2022). Whilst this
hypothesis remains to be tested it provides an important reminder that
multiple aspects of microtubule function can be perturbed
simultaneously by individual tubulin amino acid substitutions.

Plus-end MAPs: CLASPs

The CLASPs are MAPs that counteract microtubule catastrophe
by stabilising de-polymerisation and potentiating ‘rescue’ (Al-

FIGURE 5
(A) Schematic alignment and positional conservation of TOG domains in XMAP215 family microtubule polymerases and CLASPs [adapted from (Al-Bassam
and Chang, 2011; Byrnes and Slep, 2017)]. (B) Schematic depiction of dynamic behaviour of (i) pure microtubules (grey lines), (ii) accelerated microtubule
polymerisation in the presenceof XMAP215 family polymerases (gold), and (iii)microtubule rescuemediatedby fission yeastCLASP,Cls1p (blue), adapted from (Al-
Bassam and Chang, 2011). (C) Homology model depiction of a unpolymerised tubulin heterodimer complexed with TOG1 domain of S. cerevisiae
microtubule polymerase Stu2 (gold) (PDB 4FFB) and docked TOGL2 domain of Stu1 (S. cerevisiae CLASP; blue) (PDB 6COK) (Ayaz et al., 2012; Majumdar et al.,
2018). α-tubulins are represented by a pink ribbon, β-tubulins in silver. Both TOGs bind preferentially to curved tubulin heterodimers, hence α- and β-tubulin
subunits are tilted 13 to form this complex (Ayaz et al., 2012). (D) A detailed view of the predicted TOG1 binding interface of tubulin heterodimers. The α-tubulin
residue valine 409 (410 in yeast) (red) is directly involved in TOG1 binding, with substitutions affecting its binding and localisation to microtubule plus-ends (Hoff
et al., 2022). (E) Detailed view of the predicted TOGL2 binding interface of tubulin heterodimers. Mutating α-tubulin proline 263 and arginine 402 (P264 and
R402 in yeast) have been shown to reduce binding affinity with human CLASPs 1 & 2 (Yu et al., 2016).
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Bassam et al., 2010). This family includes human CLASP1 and
CLASP2, Stu1 into yeast (S. cerevisiae) and Cls1p (or Peg1) in fission
yeast (S. pombe) (Yin et al., 2002; Grallert et al., 2006; Sousa et al.,
2007). Whilst CLASPs are known to associate with microtubule
plus-end through EB1-mediated recruitment (Honnappa et al.,
2009), they are also able to bind the microtubule polymer lattice
directly through two serine/arginine-rich C-terminal domains
(Wittmann and Waterman-Storer, 2005; Al-Bassam et al., 2010).
Whilst the C-terminal domain attaches to the microtubule lattice,
two parallel N-terminal TOG-like (TOGL) domains (related
structurally to those found in XMAP215 polymerases) work in
tandem to lasso free tubulin heterodimers in the surrounding
cytoplasm (Al-Bassam et al., 2010). Through these TOG-like
motifs, CLASPs function as a molecular safety net during
microtubule catastrophe (Figure 5B), restoring local
concentrations of free tubulin dimers to offset rapid rates of
disassembly and initiate microtubule rescue.

Recently, tubulin gene mutations have been shown to affect
CLASP recognition and/or binding (Yu et al., 2016). To identify
novel Tubulin-Associated Proteins (TAPs), Yu and others developed
a dual tubulin expression construct system to introduce equimolar
levels of TUBB3 and biotinylated TUBA1A into HEK293T cells (Yu
et al., 2016). Complementing this with quantitative mass
spectrometry, they could identify TAPs pulled down with
transgenic tubulin through streptavidin-mediated purification.
Among the most abundant proteins in the “Tubulome” were
CLASP1 & CLASP2 (Yu et al., 2016), confirming a strong affinity
of CLASP TOG-like domains for free tubulin (Al-Bassam et al.,
2010). The authors built upon their initial dataset by introducing
two tubulin variants associated with human cortical malformations
into this expression vector: TUBA1A P263T and R402H (Poirier
et al., 2007; Yu et al., 2016). When expressing these mutant
constructs in this system, the authors detected notable reductions
in the pull-down efficiency of both CLASP1 & CLASP2, as well as
the Golgi-associated protein GCC185, a known interactor of CLASP
(Efimov et al., 2007; Yu et al., 2016). Interestingly, whilst arginine

402 is near the predicted interface between CLASP TOG-like regions
and tubulin (Figures 5C, E), proline 263 looks unlikely to contribute
directly to CLASP binding. The TUBA1A P263T variant might
therefore affect CLASP binding indirectly through allosteric changes
to the tubulin heterodimer.

Plus-end MAPs: EBs

The End-Binding proteins (EB1-3) are an evolutionarily
conserved family of plus-end MAPs. They localise to the
microtubule tip through an N-terminal Calponin Homology
(CH) domain, which binds most efficiently to the newest, stable
portion of the microtubule (Hayashi and Ikura, 2003; Maurer et al.,
2011). The CH domains bind four tubulin subunits simultaneously,
bridging two adjacent protofilaments and at an interdimer interface
(between different heterodimers) (Maurer et al., 2012) (Figure 6A).
Rather than providing direct structural support, EBs predominantly
recruit other plus-end MAPs to this region and are therefore key
players in co-ordinating MAP-mediated control of microtubule
dynamics (Slep et al., 2005).

A TUBB2B F265L mutation that causes multifocal
polymicrogyria (Jaglin et al., 2009), has been shown to disrupt
binding of the yeast homologue of EB1 known as Bim1
(Denarier et al., 2019). Denarier and others introduced the F265L
mutation into Tub2 in yeast, and demonstrated that it incorporates
into microtubules (Denarier et al., 2019), despite previous evidence
that it compromises protein folding and heterodimerisation
efficiency (Jaglin et al., 2009). This resulted in a viable yeast
strain with microtubules that were smaller but more stable, with
a reduced frequency of microtubule catastrophe events, increased
pause duration and increased resistance to the depolymerising drug
Benomyl (Denarier et al., 2019). This was attributed to perturbation
of microtubule association with Bim1, the yeast homologue of
EB1 which showed a marked reduction in plus end binding in
the case of the F265L mutant. Surprisingly, F265 which is located

FIGURE 6
(A) In silico homology model of a microtubule protofilament with bound Calponin Homology domain of S. pombe EB1 homologue, Mal3 (labelled
EB1). α-tubulins are represented by a pink ribbon, β-tubulins in silver and EB1 in gold (PDB 4ABO) (Maurer et al., 2012). (B) A detailed view of the EB1-
tubulin interface. The F265 residue (red), associated with neurodevelopmental disease and shown to affect EB1 binding in yeast (Jaglin et al., 2009;
Denarier et al., 2019), is not predicted to interact directly with this plus-end MAP, suggesting it may act via allosteric reconfiguration. (C).
TUBB5 Q15 and Y222 (red) are located within the β-tubulin GTP (orange)-binding site and variants affecting these residues might to affect nucleotide
interaction and/or hydrolysis which, in turn, could influence EB2 binding.
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within a beta-sheet (B7) of the β-tubulin subunit (Nogales et al.,
1998), does not lie at the key point-of-contact between EB1 and
microtubules (Maurer et al., 2012; Howes et al., 2017). This residue
sits within the β-tubulin ‘intermediate domain’, and its side chain is
angled towards the core of the subunit (Figures 6A, B) where it is
potentially involved in maintaining the structural integrity of the
globular protein. EB binding, however, is thought to be sensitive to
subtle structural changes within the microtubule lattice, closely
linked to the nucleotide state of heterodimers at the polymer tip
(Maurer et al., 2012). Accordingly, the authors hypothesised that the
F265L variant affects EB1/Bim1 interaction indirectly, through
conformational changes to the β-tubulin and/or adjacent
subunits, which modify the CH binding pocket at the
microtubule exterior (Denarier et al., 2019).

Whilst all EB family proteins (EB1-3) bind microtubule-tips
through conserved CH domains, they are each thought to bind to
spatially distinct sites with preference for different tubulin
nucleotide states (Roth et al., 2018). EB2 is arguably the outlier
in this protein family; it is the most diverse in terms of amino acid
sequence divergence, it does not promote microtubule growth, it
does not dimerise, and it associates along the microtubule lattice
during mitosis (Juwana et al., 1999; Li et al., 2022). Four EB2-specific
microtubule binding residues within the CH domain are thought to
contribute to its unique polymer-binding behaviour (Roth et al.,
2018). A mutation in one of these residues, R143C, plus two others
within the microtubule-binding CH domain (N68S and Y87C) are
known to cause Circumferential Skin Creases Kunze Type, a
congenital disorder characterised by excessive skin folds,
intellectual disability, and dysmorphic features (Isrie et al., 2015).
All three variants increase EB2 co-sedimentation with microtubules
in vitro (Isrie et al., 2015). Intriguingly, two TUBB5 variants, Q15K
and Y222C, are also associated with this distinctive condition (Isrie
et al., 2015). Given the strong phenotypic overlap between these
TUBB5 and EB2 variants, they could act through a common
molecular mechanism. Whilst the pathogenic TUBB5 residues are
located outside the CH-binding motif, they are proximal to each
other within the core of the β-tubulin subunit (Figure 6C).
Significantly, they are located within the ‘exchangeable’ GTP
binding site, with Q15 known to bind directly to the nucleotide
(Lowe et al., 2001). TUBB5 Q15K and Y222C may therefore distort
the highly conserved GTP binding motif and/or rate of GTP
hydrolysis which could disrupt the nucleotide state-dependent
binding of EB2 at microtubule plus-ends (Figure 6C).

Concluding remarks

To support the diversification of life from simple microbes to
complex multicellular organisms, the dynamic behaviour of
microtubules has been harnessed to execute a growing
assortment of specialised intracellular tasks. To unlock the full
potential of these cytoskeletal polymers, complex families of
MAPs have co-evolved alongside increasingly diverse tubulin
isotypes to finely choreograph distinct populations of
microtubule polymers to enable changes in cell morphology, cell
migration, intracellular transport, andmitotic division. Mutations in
the tubulin genes can have serious consequences for human health,
with an ever-expanding array of disease states associated with de

novomissense mutations. Our challenge is to understand how these
mutations cause disease, and to exploit this understanding to
develop personalised medicines in the future. This review has
focused on a series of emerging studies that have asked how
tubulin mutations influence MAP binding, specifically, KIF21A,
the dynein complex, XMAP215, CLASP1/2, and EB1/2. This
analysis has highlighted the importance of mutation specific
mechanisms, which perturb a particular pathway and
consequentially result in a disease with defined attributes. While
some mutations influence MAP binding in a predictable way given
their physical proximity, it is evident that tubulin variants can have
allosteric effects on microtubule structure thereby influencing MAP
binding in unexpected ways. This is perhaps one reason, why the
phenotypic prediction of tubulin mutations has proved to be so
difficult (Attard et al., 2022).

It is clear that much remains to be discovered. At least 180 tubulin
variants have been described in the literature to date, but only twelve
(four α- and eight β-tubulin) have been explicitly shown to affectMAP
interaction and/or function. This reflects the laborious nature of
mechanistic studies in microtubule biology, prompting many
investigators to use yeast as a model system. While efficient and
robust, yeast cannot replicate the cocktail of MAPs that are present in
the mammalian brain, nor the diversity of tubulin isotypes and PTMs.
On the other hand it is not feasible or practical to generate conditional
mouse models for each tubulin variant. An alternative way forward is
to exploit technological developments in stem cell biology and 3D
tissue-specific organoid cultures. It is now possible to generate and
characterise cerebral organoids from iPSC lines generated from
patients with tubulin mutations, alongside CRISPR-repaired
isogenic controls. Coupled with advanced quantitative proteomic
methods, investigators can interrogate the effect of tubulin
mutations on the microtubule proteome in a human system with
greater ease (Leca et al., 2020; Rafiei and Schriemer, 2022). This would
permit the identification of novel MAPs relevant to disease states, as it
likely there are numerous uncharacterised MAPs that have yet to be
identified that influence microtubule behaviour in unexpected ways
(Jijumon et al., 2022). In the future these cellular systems may provide
a powerful and patient-specific platform to screen for personalised
therapeutic interventions.
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